Monday, November 14, 2016

Gleitender Durchschnitt Und Exponentielle Glättungsmodelle

Einfache Vs. Exponential Moving Averages Moving-Mittelwerte sind mehr als das Studium einer Folge von Zahlen in aufeinanderfolgender Reihenfolge. Frühe Praktiker der Zeitreihenanalyse beschäftigten sich tatsächlich eher mit einzelnen Zeitreihenzahlen als mit der Interpolation dieser Daten. Interpolation. In Form von Wahrscheinlichkeitstheorien und - analyse, kam viel später, als Muster entwickelt wurden und Korrelationen entdeckt. Einmal verstanden, wurden verschiedene geformte Kurven und Linien entlang der Zeitreihen gezogen, um zu prognostizieren, wo die Datenpunkte gehen könnten. Diese werden nun als grundlegende Methoden, die derzeit von technischen Analyse-Händler verwendet. Charting-Analyse kann bis ins 18. Jahrhundert Japan zurückverfolgt werden, aber wie und wann bewegte Durchschnitte wurden zuerst auf Marktpreise angewendet bleibt ein Geheimnis. Es wird allgemein verstanden, dass einfache Bewegungsdurchschnitte (SMA) lange vor exponentiellen Bewegungsdurchschnitten (EMA) verwendet wurden, da EMAs auf SMA-Gerüsten aufgebaut sind und das SMA-Kontinuum für Plotter und Verfolgungszwecke leichter verstanden wurde. (Möchten Sie ein wenig Hintergrund lesen Check out Moving Averages: Was sind sie) Simple Moving Average (SMA) Einfache gleitende Durchschnitte wurden die bevorzugte Methode für die Verfolgung Marktpreise, weil sie schnell zu berechnen und leicht zu verstehen sind. Frühe Marktpraktiker arbeiteten ohne den Gebrauch der ausgefeilten Diagrammmetriken, die heute benutzt werden, also verließen sie hauptsächlich auf Marktpreisen als ihre alleinigen Führer. Sie berechneten die Marktpreise von Hand, und graphed diese Preise, um Trends und Marktrichtung zu bezeichnen. Dieser Prozeß war sehr langwierig, erweist sich aber mit der Bestätigung weiterer Untersuchungen als recht rentabel. Um einen 10-tägigen einfachen gleitenden Durchschnitt zu berechnen, addieren Sie einfach die Schlusskurse der letzten 10 Tage und dividieren durch 10. Der gleitende 20-Tage-Durchschnitt wird berechnet, indem die Schlusskurse über einen Zeitraum von 20 Tagen addiert und durch 20 dividiert werden bald. Diese Formel ist nicht nur auf Schlusskurse basiert, sondern das Produkt ist ein Mittel der Preise - eine Teilmenge. Bewegungsdurchschnitte werden als bewegt bezeichnet, weil sich die in der Berechnung verwendete Gruppe von Preisen gemäß dem Punkt auf dem Diagramm bewegt. Das bedeutet, dass alte Zeiten zugunsten neuer Schlusskurstage fallengelassen werden, so dass immer eine neue Berechnung erforderlich ist, die dem Zeitrahmen des durchschnittlichen Beschäftigten entspricht. So wird ein 10-Tage-Durchschnitt neu berechnet, indem der neue Tag hinzugefügt und der 10. Tag fallen gelassen wird, und der neunte Tag wird am zweiten Tag fallen gelassen. Exponential Moving Average (EMA) Exponential Moving Average (EMA) Der exponentielle gleitende Durchschnitt wurde verfeinert und seit den sechziger Jahren aufgrund früherer Experimente mit dem Computer weiter verbreitet. Die neue EMA würde sich mehr auf die jüngsten Preise konzentrieren als auf eine lange Reihe von Datenpunkten, da der einfache gleitende Durchschnitt erforderlich ist. Aktuelle EMA ((Preis (aktuelle) - vorherige EMA)) X Multiplikator) vorherige EMA. Der wichtigste Faktor ist die Glättungskonstante, dass 2 / (1N) mit N die Anzahl der Tage. Eine 10-Tage-EMA 2 / (101) 18,8 Dies bedeutet, dass ein 10-Perioden-EMA den jüngsten Preis 18,8, ein 20-Tage EMA 9,52 und 50-Tage EMA 3,92 Gewicht auf den letzten Tag gewichtet. Die EMA arbeitet, indem sie den Unterschied zwischen dem Preis der gegenwärtigen Perioden und der vorherigen EMA gewichtet und das Ergebnis der vorherigen EMA hinzugefügt hat. Je kürzer die Periode, desto mehr Gewicht auf den jüngsten Preis angewendet. Anpassungslinien Nach diesen Berechnungen sind Punkte aufgetragen und zeigen eine passende Linie. Anpassungen über oder unter dem Marktpreis bedeuten, dass alle gleitenden Durchschnitte nacheilende Indikatoren sind. Und werden hauptsächlich für folgende Trends verwendet. Sie funktionieren nicht gut mit Reichweitenmärkten und Perioden der Überlastung, weil die passenden Linien nicht einen Trend aufgrund eines Mangels an offensichtlich höheren Höhen oder niedrigeren Tiefs bezeichnen. Plus, passende Linien neigen dazu, konstant bleiben, ohne Andeutung der Richtung. Eine aufsteigende Montagelinie unterhalb des Marktes bedeutet eine lange, während eine sinkende Montagelinie oberhalb des Marktes ein kurzes bedeutet. (Für eine vollständige Anleitung, lesen Sie unsere Moving Average Tutorial.) Der Zweck der Verwendung eines einfachen gleitenden Durchschnitt ist es, zu erkennen und zu messen Trends durch Glättung der Daten mit Hilfe von mehreren Gruppen von Preisen. Ein Trend wird entdeckt und in eine Prognose hochgerechnet. Es wird davon ausgegangen, dass sich die bisherigen Trendbewegungen fortsetzen werden. Für den einfachen gleitenden Durchschnitt kann ein langfristiger Trend gefunden und gefolgt werden, viel einfacher als eine EMA, mit der vernünftigen Annahme, dass die Anpassungslinie stärker als eine EMA-Linie aufgrund der längeren Fokussierung auf Mittelpreise halten wird. Eine EMA wird verwendet, um kürzere Trendbewegungen zu erfassen, aufgrund der Fokussierung auf die jüngsten Preise. Durch dieses Verfahren soll eine EMA jede Verzögerung in dem einfachen gleitenden Durchschnitt reduzieren, so dass die Anpassungslinie die Preise näher umschließt als ein einfacher gleitender Durchschnitt. Das Problem mit der EMA ist dies: Seine anfällig für Preisunterbrechungen, vor allem auf schnellen Märkten und Zeiten der Volatilität. Die EMA funktioniert gut, bis die Preise die passende Linie brechen. Bei höheren Volatilitätsmärkten könnte man erwägen, die Länge des gleitenden Durchschnittsbegriffs zu vergrößern. Man kann sogar von einer EMA zu einer SMA wechseln, da die SMA die Daten viel besser macht als eine EMA aufgrund ihres Fokus auf längerfristige Mittel. Trendindikatoren Als Nachlaufindikatoren dienen die gleitenden Mittelwerte als Unterstützungs - und Widerstandslinien. Wenn die Preise unter einer 10-tägigen Anpaßlinie in einem Aufwärtstrend brechen, sind die Chancen gut, dass der Aufwärtstrend schwächer werden kann, oder zumindest kann sich der Markt konsolidieren. Wenn die Preise über einen 10 Tage gleitenden Durchschnitt in einem Abwärtstrend brechen. Kann der Trend abnehmen oder konsolidieren. Verwenden Sie in diesen Fällen einen 10- und 20-Tage gleitenden Durchschnitt zusammen, und warten Sie, bis die 10-Tage-Linie über oder unter der 20-Tage-Linie zu überqueren. Dies bestimmt die nächste kurzfristige Richtung für die Preise. Für längere Zeiträume, beobachten Sie die 100- und 200-Tage gleitende Mittelwerte für längerfristige Richtung. Wenn man beispielsweise den 100- und 200-Tage-Gleitdurchschnitt verwendet, wenn der 100-Tage-Gleitende Durchschnitt unter dem 200-Tage-Durchschnitt überschreitet, nennt man ihn das Todeskreuz. Und ist sehr bärisch für die Preise. Ein 100-Tage-Gleitender Durchschnitt, der über einen 200-Tage gleitenden Durchschnitt kreuzt, wird das goldene Kreuz genannt. Und ist sehr bullisch für die Preise. Es spielt keine Rolle, wenn ein SMA oder eine EMA verwendet wird, weil beide Trend-folgende Indikatoren sind. Seine nur in der kurzfristigen, dass die SMA hat geringfügige Abweichungen von seinem Pendant, die EMA. Fazit Die gleitenden Durchschnitte sind die Grundlage der Diagramm - und Zeitreihenanalyse. Einfache gleitende Durchschnitte und die komplexeren exponentiellen gleitenden Durchschnitte helfen, den Trend zu visualisieren, indem sie Preisbewegungen ausgleichen. Technische Analyse wird manchmal als Kunst und nicht als Wissenschaft bezeichnet, die beide Jahre in Anspruch nehmen. (Erfahren Sie mehr in unserem Technical Analysis Tutorial.) HINTquot ist ein Akronym, das für Quothigh-Einkommen keine Steuern steht. Es wird auf Hochverdiener angewendet, die die Zahlung des Bundeseinkommens vermeiden. Ein Market Maker, dass kauft und verkauft extrem kurzfristige Unternehmensanleihen genannt Commercial Paper. Ein Papierhändler ist in der Regel. Eine Bestellung mit einem Brokerage zu kaufen oder zu verkaufen eine bestimmte Anzahl von Aktien zu einem bestimmten Preis oder besser platziert. Der uneingeschränkte Kauf und Verkauf von Waren und Dienstleistungen zwischen den Ländern ohne Einschränkungen wie. In der Welt der Wirtschaft, ein Einhorn ist ein Unternehmen, in der Regel ein Start-up, die nicht über eine etablierte Performance-Rekord. Ein Betrag, den ein Hausbesitzer zahlen muss, bevor die Versicherung den Schaden durch einen Hurrikan verursacht. Forecasting von Smoothing Techniques Diese Website ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung zu decken. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die früheren Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 / (n1) OR n (2 - a) / a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) / Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die erforderlichen kurzfristigen Prognosen zu erhalten. Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit übernommen wird, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (linke (frac rechts)) sind die Gewichte, und natürlich summieren sie sich auf 1. Mittelwerte und exponentielle Glättungsmodelle Als ein erster Schritt bei der Verbesserung der naiven Prognosemodelle können nicht-saisonale Muster und Trends mit Hilfe eines gleitenden Mittelwertes extrapoliert werden Glättungsmodell. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen sich bewegenden (d. h. lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen, und verwenden diesen als die Prognose. Dies kann als Kompromiss zwischen dem Mittelmodell und dem Zufallswegmodell betrachtet werden. Der gleitende Durchschnitt wird oft als eine geglättete Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Einstellen des Grades der Glättung (d. H. Der Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Ein einfacher (gleich gewichteter) Moving Average: Hier ist die Ein-Perioden-Prognose Yacute (t), die zum Zeitpunkt t-1 gemacht wird, gleich dem einfachen Mittelwert der letzten k Beobachtungen. Dieser Mittelwert wird in der Periode t (k1) / 2 zentriert, was bedeutet, dass die Schätzung des lokalen Mittels dazu tendiert, hinter dem wahren Wert des lokalen Mittels um etwa (k1) / 2 Perioden zu verzichten. Das durchschnittliche Alter der Daten im einfachen gleitenden Durchschnitt ist also (k1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu neigen, hinter den Wendepunkten in der Region zu liegen Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn k1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn k sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k einzustellen, um die beste Anpassung an die Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Zuerst versuchen wir, es mit einem zufälligen Fußmodell zu platzieren, was einem einfachen gleitenden Durchschnitt von 1 Term gleichkommt: Das zufällige Wegmodell reagiert sehr schnell auf Änderungen in der Reihe, aber dabei nimmt es viel von dem Geräusch in der Daten (die zufälligen Fluktuationen) sowie das Signal (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Interessanterweise werden die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Wenn Sie dieses Modell in der Praxis verwenden würden, wären Sie gut beraten, eine empirische Schätzung der Vertrauensgrenzen für die längerfristigen Prognosen zu verwenden. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Browns Einfache exponentielle Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k Beobachtungen gleichermaßen behandelt und vollständig alle vorhergehenden Beobachtungen ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. Es sei eine Glättungskonstante (eine Zahl zwischen 0 und 1) und S (t) den Wert der geglätteten Reihe in der Periode t. Die folgende Formel wird rekursiv verwendet, um die geglättete Reihe zu aktualisieren, wenn neue Beobachtungen aufgezeichnet werden. Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei die Nähe des interpolierten Wertes auf die letzte Beobachtung gesteuert wird. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: (Anmerkung: Wir werden fortan das Symbol Yacute für eine Prognose der Zeitreihe Y verwenden, da Yacute dem nächsten Y-Hut am nächsten liegt Eine Web-Seite.) Gleichermaßen können wir die nächste Prognose direkt aus früheren Prognosen und früheren Beobachtungen auf eine der folgenden Weisen ausdrücken: Yakut (t1) Y (t) (1) Yakut (t). Vorhersageinterpolation zwischen vorheriger Prognose und früherer Beobachtung Yacute (t1) Yacute (t) e (t). (T) Y (t) Y (t) Yakut (t1) Y (t) - (1-) e (t). Vorausgesetzte Vorhersage plus Bruchteil des vorherigen Fehlers. (T-1) Y (t-1) Y (t-1) Y (t-1) ((1) 2) Y (t-2) -3) . . Prognose exponentiell gewichtet (d. h. diskontiert) gleitender Durchschnitt mit Diskontfaktor 1- Die vorangehenden vier Gleichungen sind alle mathematisch gleichwertig - einer von ihnen kann durch Umlagerung von einem der anderen erhalten werden. Die erste Gleichung oben ist wahrscheinlich die einfachste zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren: die Prognoseformel passt in eine einzelne Zelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle, wo der Wert von ist, zeigt gelagert. Beachten Sie, dass, wenn 1, das SES-Modell ist äquivalent zu einem zufälligen gehen Modell (ohne Wachstum). Wenn 0, ist das SES-Modell äquivalent zu dem mittleren Modell, wobei angenommen wird, daß der erste geglättete Wert gleich dem Mittelwert gesetzt ist. Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsvorhersage ist 1 / relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 / Perioden. Wenn zum Beispiel 0,5 die Verzögerung 2 Perioden beträgt, wenn 0,2 die Verzögerung 5 Perioden beträgt, wenn 0,1 die Verzögerung 10 Perioden ist, und so weiter. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas besser auf Veränderungen in der jüngsten Vergangenheit reagieren. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist, so dass er mit Hilfe eines Lösungsalgorithmus leicht optimiert werden kann, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert des SES-Modells für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist . Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das zufällige Modell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells, so dass die statistische Theorie der ARIMA-Modelle eine gute Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als ARIMA (0,1,1) - Modell ohne Konstante bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies in Statgraphics zu tun, geben Sie einfach ein ARIMA-Modell mit einer Nicht-Seasonal-Differenz und einem MA (1) - Term mit einem konstanten, d. H. Einem ARIMA (0,1,1) - Modell mit einer Konstante an. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die entsprechende Inflationsrate (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen über die langfristigen Wachstumsperspektiven beruhen . Browns Linear (d. h. doppelt) Exponentialglättung Wenn sowohl der Trend als auch der Mittelwert sich im Laufe der Zeit langsam ändert, wird ein höherwertiges Glättungsmodell benötigt, um den unterschiedlichen Trend zu verfolgen. Das einfachste zeitvariable Trendmodell ist das Browns lineare exponentielle Glättungsmodell (LES), das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Alternativ kann eine doppelte Anwendung der einfachen gleitenden Methode verwendet werden, um zeitabhängige Trends zu verfolgen - siehe Seiten 154-158 in Ihrem Lehrbuch.) Die algebraische Form des linearen exponentiellen Glättungsmodells, wie die der einfachen exponentiellen Glättung Modell, kann in einer Anzahl von verschiedenen, aber gleichwertigen Formen ausgedrückt werden. Die Standardform dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Folge, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, (T1) S (t) an dieser Stelle.) Dann sei S die doppelt geglättete Folge, die durch Anwendung einfacher exponentieller Glättung (unter Verwendung desselben) in Reihe S erhalten wird: Schließlich wird die Prognose Yacute ( T1) gegeben durch: a (t) 2S (t) - S (t). Der geschätzte Pegel an der Periode t Prognosen mit längeren Durchlaufzeiten, die in der Periode t durchgeführt werden, werden durch Addieren von Vielfachen des Trendterms erhalten. Beispielsweise wäre die k-Periodenvorhersage (d. h. die Prognose für Y (tk), die in der Periode t) erzeugt wird, gleich a (t) kb (t). Zur Modellierung (zB Berechnung von Prognosen, Residuen und Reststatistiken über den Schätzzeitraum) kann das Modell durch S (1) S (1) Y (1) gestartet werden, dh beide geglätteten Serien gleich setzen Der beobachtete Wert bei t1. Eine mathematisch äquivalente Form des braunen linearen exponentiellen Glättungsmodells, das seinen nicht-stationären Charakter unterstreicht und einfacher in einer Kalkulationstabelle implementiert werden kann, ist die folgende: Mit anderen Worten, die vorhergesagte Differenz bei der Periode t (nämlich Yacute (t) - Y T-1)) gleich der vorherigen beobachteten Differenz (nämlich Y (t-1) - Y (t-2)) minus einer gewichteten Differenz der beiden vorhergehenden Prognosefehler. Achtung: Diese Form des Modells ist ziemlich knifflig, um zu Beginn des Schätzzeitraums zu beginnen. Folgende Konvention wird empfohlen: Yacute (1) Y (1) zu setzen, die e (1) 0 ergibt (dh ein Bit betrügen und die erste Prognose der tatsächlichen ersten Beobachtung entsprechen), dann auch Yacute (2) Y setzen (1), was zu e (2) Y (2) - Y (1) führt, dann von dieser Stelle aus mit der obigen Gleichung fortfahren. Dies würde die gleichen Anpassungswerte ergeben wie die Formel auf der Basis von S und S, wenn diese mit S (1) S (1) Y (1) gestartet wurden. Wieder einmal können Sie Ihre Kalkulationstabelle der Löser oder jede nichtlineare kleinste Quadrate Algorithmus, um den Wert von optimieren. Der optimale Wert in der LES-Modell an dieser Serie von Statgraphics ausgestattet ist 0.1607. Beachten Sie, dass die Langzeitprognosen des LES-Modells für diese Zeitreihe den Trend in den letzten 10 Perioden verfolgen. Außerdem wachsen die Konfidenzintervalle für das LES-Modell schneller als die des SES-Modells. Was ist das Beste für diese besondere Zeitreihe Hier ist ein Modellvergleichsbericht für die oben beschriebenen Modelle. Es scheint, dass das SES-Modell besser als die SMA-Modelle, und LES-Modell ist dicht hinter. Ob Sie SES oder LES in diesem Fall wählen, hängt davon ab, ob Sie wirklich glauben, dass die Serie einen lokalen Trend hat. Browns quadratisches (d. h. dreifaches) Glättungsmodell. Verwendet drei geglättete Serien zu verschiedenen Zeitpunkten zentriert und extrapoliert eine Parabel durch die drei Zentren. Dies wird jedoch in der Praxis nur selten angewandt, da echte quadratische Trends selten sind und das Modell sehr instabil ist. Welche Art von Trend-Extrapolation am besten ist: horizontal, linear oder quadratisch Empirische Evidenz legt nahe, dass, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), dann kann es unklug sein, kurzfristige lineare (oder schlechtere, quadratische) zu extrapolieren ) Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als man sonst erwarten könnte, trotz ihrer naiven horizontalen Trend-Extrapolation. Damped Trend Modifikationen des linearen exponentiellen Glättungsmodells werden oft in der Praxis verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen - leider sind diese nicht in Statgraphics verfügbar. Grundsätzlich ist es möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Sonderfälle von ARIMA-Modellen betrachtet. (Achtung, nicht bei allen Programmen ist dies korrekt) Insbesondere eine Reihe populärer automatischer Prognoseprogramme verwenden hochverdächtige Methoden zur Berechnung von Konfidenzintervallen für exponentielle Glättungsprognosen.) Die Breite der Konfidenzintervalle ist abhängig von (i) dem RMS-Fehler des Systems (Ii) dem Wert von (iii) dem Glättungsgrad (einfach, doppelt oder dreifach) und (iv) der Anzahl der voraussichtlichen Perioden. Im allgemeinen breiten sich die Intervalle schneller aus, je größer sie werden und / oder oder wie die Glättungsreihenfolge von Einzel - zu Doppel - bis Dreifach zunimmt. Wir werden dieses Thema erneut besprechen, wenn wir ARIMA-Modelle später im Kurs diskutieren. Moving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt, über jenseits von Mittelwerten, zufälligen Walk-Modellen und linearen Trendmodellen hinauszugehen, können nicht-saisonale Muster und Trends mit einem Moving extrapoliert werden - Gebrauchs - oder Glättungsmodell. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das durchschnittliche Alter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Fußmodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-term gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, dies wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit, und die erste Prognose ist gleich der tatsächlichen ersten Beobachtung) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die er anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstante 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Falle ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern dieselbe von der gleichen Größenordnung wie die Stichprobengröße von 100 ist , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.)


No comments:

Post a Comment